Pure scientific research pays for itself

Pure scientific research is economically viable because it has a fat tail. Science is expensive, but sporadic breakthroughs lead to economic benefits that more than cover the bill for the other studies. If you could buy stock in Pure Scientific Research, it would be a worthwhile investment, with estimated returns on investment of 20–60%. The catch? You have to share your returns with everyone else. They aren’t appropriable as an economist would say.

The importance of pure scientific research to the vast majority of modern life cannot be understated. But this importance is hidden. The tech, pharma, and auto companies that we buy products from undertake their own research and development, but it exists upon a base of fundamental science discovered within university walls. This link between pure research and modern day technology would be more obvious if, as Bruce Parker suggests, there were “Science made this possible” signs on every appliance, drug, car, computer, game machine, and other necessities of life. And let’s not forget that the Internet grew out of a technology physicists developed to help communicate with each other.

Continue reading “Pure scientific research pays for itself”

The formatting of Nature, Cell and Science papers improves their readability

My favourite aspect of a Nature paper is the figure captions. Not the paper’s innovative science. Not the paper’s succinct length. The figure captions. Why? Because the journal’s simple act of bolding the first sentence of a figure caption can force authors to clarify the purpose of the figure. This is one of several seemingly minor formatting issues that ultimately improves a paper’s readibility.

Continue reading “The formatting of Nature, Cell and Science papers improves their readability”

Scientific conclusions: a more journalistic approach

Conclude your science. Don’t summarise it.

A summary that merely repeats previous material is prohibited for the journal Nature and would be be edited out. Other journals are less strict, but perhaps they should follow Nature’s lead and recommend instead that the conclusion offer something new to the reader. This is often easier said than done. Scientists default toward endings that are typically cliche, uncompelling, or just tail off. Let’s look to factual but more expressive forms of writing, such as long-form journalism and narrative non-fiction, for examples of better endings that could be applied to scientific papers and talks.

Journalists arguably have a little more freedom than scientists in how they word the ending of a piece. A memorable quote or a clever joke, perfect fodder for a popular article, would be out of place in a scientific article. Yet there are several forms of conclusion that we could borrow from journalists to provide a more engaging ending. I’ll borrow my examples primarily from The Atlantic, but any decent popular publication can help.

Continue reading “Scientific conclusions: a more journalistic approach”

What does scientific genius look like in the 21st century?

The names we typically associate with scientific genius are from several centuries or millennia ago. Think Newton, Einstein, Archimedes, Galileo, or Darwin. Even famed scientists that are modern by comparison (Richard Feynman, Francis Crick, or Linus Pauling) made discoveries many decades ago. Just as any sports fan will tell you it is pointless to compare athletes from different eras, the same is true, if not more so, for scientists. Whereas athletes are largely playing the same game as they were decades ago, science has changed. We aim to always answer new questions, address ever more complex and interdisciplinary issues, and occasionally develop experiments costing billions of dollars. How, then, does scientific genius manifest in the 21st century? Which circumstances are most conducive to developing scientific genius? And what traits does a genius in the modern scientific realm exhibit?

Continue reading “What does scientific genius look like in the 21st century?”

Benefits of avoiding replication studies

The benefits of replication studies in science seem obvious and intuitive. Yet they are not particularly prevalent nor encouraged. The typical reasoning is that there’s no value for being the second scientist or group to observe a result. Some1 take this to suggest that the current scientific publishing system is flawed and promotes papers with provocative results rather than technically sound methods. Journals like PLOS One that disregard perceived importance are the exception. There are, however, a number of advantages of the status quo.

Continue reading “Benefits of avoiding replication studies”

Scientific rationale: convenient little white lies?

Physics is like sex: sure, it may give some practical results, but that’s not why we do it quipped Richard Feynman. The oceanographer Curtis Ebbesmeyer1 provides a similar, albeit less memorable quote, when describing his early work on water slabs (aka snarks), which had relevance to both military and pollution issues: such practical matters did not interest me. I found snarks fascinating, even beautiful in their own right. The introductions to many scientific papers, however, are framed in terms of practical results. Hence the rhetorical question implied in the title: are the rationale we as scientists publish convenient little white lies: simply a way to validate undertaking the science that we find personally interesting and intrinsically satisfying?

Continue reading “Scientific rationale: convenient little white lies?”

Benefits of an e-reader for academics

E-readers are no good for reading scientific papers.1 They’re grayscale, they’re too small, and flipping back and forth between pages takes time. That said, my e-reader has two key benefits for me as a scientist/academic. It provides a truly offline method to read content later and it lets me read books that are only available as PDFs.

ereader_example2
An example of how a given blog post looks on my e-reader

Continue reading “Benefits of an e-reader for academics”