Embracing minimalism when presenting science

Everything should be made as simple as possible, but no simpler said Einstein. Except, he didn’t. His version of the quote was four times longer.

I’m not surprised that it took a non scientist to paraphrase and create the short, popular version. As scientists, we are not accustomed to brevity. We want to provide every detail. We read papers filled with columns of 10pt text. We construct figures with dozens of lines and colours. We spare no bit of white space when we design posters. And don’t get me started on logos for scientific campaigns (long story short: too many elements, too many colours, and too literal).

We lack minimalism.

You may argue that detail, nuance, and chains of logic—hallmarks of science—are not easily reduced to 280 characters or a sexy soundbite. I don’t disagree. But there are still aspects of minimalism we should embrace.

Continue reading “Embracing minimalism when presenting science”

My favourite word is appreciably: overused words in scientific writing

Every writer leaves a hidden fingerprint in their texts whether they know it or not. It’s hidden in the relative usage of words: some words appear more than average and other words less. Imagine there’s a rumour that a well established author has written a new book under a pen name, but they’re are pretending that this is not the case. One piece of evidence that the authors are one in the same is to count the number mundane words like and, but or -ly adverbs used within the new book and then compare the numbers to the author’s past works. Authors use surprisingly similar numbers of each word over the length of a book. Don’t believe me? Then check out Ben Blatt’s book Nabokov’s Favorite Word is Mauve.

The title of this post is a nod to Blatt’s book. In this, he statistically analyses word frequency in a range of texts from literature to fan fiction to New York Times bestsellers. He uses numbers to teach us about writing. Early on, he shows how a reduction in usage of -ly adverbs correlates with a book’s appeal. This is but one of many predictors of a text’s success based only on word frequency. In the same vein, I’m going to scrutinise my own scientific writing to find room for improvement. Navel-gazing? Yes. Will you learn something if you read on? Also yes.

Continue reading “My favourite word is appreciably: overused words in scientific writing”

Creating realistic fake data

Have you ever noticed the similarities between stock images that convey an increase? More often than not, it’s an arrow initially heading up at about a 30° angle, followed by a downturn, before continuing back up. There’s occasionally a second down-and-up for good measure. It’s sufficiently cliche that Yale Economics should feel a little embarrassed to have incorporated it into their logo.

increases
Typical results from an image search for “increase” alongside Yale Economics’ logo

In the spirit of an English teacher inferring a lot from a little, I wonder if the downturns are intended to imbue some kind of story arc to the progress implied by the ascending arrow? As in, you have to get knocked down before you can get back up. Or maybe the downturns are there to instil a sense of realism?

Absurd as these rhetorical questions sound, they hint at a surprisingly profound issue about fake data and what makes it look real.

Continue reading “Creating realistic fake data”

The Goldilocks level of abstraction in science

Science is full of abstractions. A line plot is an abstraction. A false-colour image is an abstraction. Even scientific notation like 6.0 × 1023 is an abstraction. Abstractions like these are central to science, invoked all the time, and easy to understand. Other abstractions are far from simple and may cause more confusion than clarity.

Abstraction is a slippery slope. Things can quickly get out of hand. Let’s start with a simple abstraction like velocity. The units, metres per second or kilometres per hour, tell us what it is: how fast something moves. I imagine most scientists would still be comfortable if I increase the level of abstraction by calculating the acceleration (i.e., moving from m s−1 to m s−2). But what if I had instead starting talking about a quantity in m2 s−1, not m s−2? Diffusivity and viscosity are such quantities; they measure how quickly something spreads. All I did was change m s−1 to m2 s−1 and I’ve taken a concept a kid can understand to something that may trip up an undergraduate physicist.

Continue reading “The Goldilocks level of abstraction in science”

What can the fields of UI/UX teach scientists?

Web developers and programmers have a lot riding on the quality of their product. If it behaves in an unusual manner, it’ll frustrate users. If it’s unattractive, it won’t attract users. If it’s no good, it will lose users. Users are the primary concern. Consequently, there are fields dedicated to this concern: User Interface (UI) and User Experience (UX).

Because web developers and programmers have a much wider potential audience than scientists, they have a better handle on the importance and behaviour of the end user. Scientists could learn a thing or two about UI/UX.

Continue reading “What can the fields of UI/UX teach scientists?”

True scientific news doesn’t make the news

Journalism and science have very different time scales. A week-old newspaper is barely worth reading. A week-old scientific paper is still warm from the photocopier. Journalism neglects this discrepancy and pressures science to hurry up. Numerous headlines with the eye-roll-inducing opening “A new study shows” imply that only the newest (or weirdest) science is worthy of attention. Google declares about 2000 times as many results for that phrase compared to “an old study shows”.

To make sense of the differences between science and its representation in the media, it first helps to figure out what does and doesn’t make news, and what does and doesn’t get widely shared or discussed. With that established, we’re better positioned to overcome the challenges of communicating all scientific research, not just the sexy aspects that make good headlines.

Continue reading “True scientific news doesn’t make the news”

Don’t start paragraphs with Figure n shows …

This article is going to describe … would be a terrible opening for this article. It’s six words that convey nothing. You already know this is an article, and you already know that it’s going to describe something. We don’t see this, fortunately, because the importance of a strong and compelling opening sentence is well recognised. At the paragraph level, however, it’s easy to forget the importance of the first sentence. In scientific cases, a symptom of poor or lazy writing is opening a paragraph with Figure n shows.

When it comes to visualising your data, the most important question to ask yourself is what’s your point. Wording a paragraph by starting with Figure n shows will not convey the point. It tells me what you did, but not why I should care. Using this phrase would be like putting the Methods section of a scientific paper before the Introduction.

Continue reading “Don’t start paragraphs with Figure n shows …

Default colormaps: Are Parula and Viridis really an improvement over Jet?

Jet was a ubiquitous colourmap that slowly fell out of fashion over the last five years. It was the default colourmap for Matlab and Matplotlib (and probably others) until 2015ish. The replacements, Parula and Viridis, respectively, get a lot of love. A quick Google search will present numerous blog posts and articles maligning Jet and promoting the use of these newer colourmaps. It’s an unpopular opinion but, especially now that they are common and overused, I dislike Parula and Viridis as much as I dislike Jet.

parula_viridis

Continue reading “Default colormaps: Are Parula and Viridis really an improvement over Jet?”

Ready, fire, aim: the myth of the scientific method

Scientific literature is like social media: its content disproportionately comprises successes and achievements. Just as social media seldom features mundane necessities like trips to the supermarket, scientific papers seldom feature abandoned experiments or fruitless pursuits. In fact, we generally work backwards from the results and conclusions when writing these papers. We start with the answer and present only the relevant methods. To a non-scientist, this may sound dishonest and deceptive, but it’s not. Its for the reader’s benefit: a linear narrative is much easier to follow than the actual story with its many tangents, setbacks, and realisations.

Anyone exposed to the process of scientific research quickly learns that it seldom follows the so-called scientific method, those dispassionate experiments meant to objectively test hypotheses. Science is better described as Ready, Fire, Aim. Yes, in that order. This phrase, borrowed from Neil Gershenfeld, concisely captures how science is an iterative procedure without a specific target. Put in some groundwork to figure out the general direction (Ready), but take what might otherwise be a shot in the dark (Fire), then spend time making sense of what you hit (Aim). You may well fail and hit nothing, but as Gershenfeld elaborates, you can’t hit anything unexpected by aiming first.

If the result confirms the hypothesis, then you’ve made a measurement. If the result is contrary to the hypothesis, then you’ve made a discovery – Enrico Fermi

Continue reading “Ready, fire, aim: the myth of the scientific method”

Elaborate Matplotlib animations

Matplotlib, Python’s primary scientific plotting library, provides tools to make many elaborate plots, graphs, and diagrams. Many of these can be animated, but the process isn’t always intuitive. The hardest part is learning how to animate a simple line plot (here’s my easy way). Beyond that, the steps to creating most animations tend to be similar.

The examples below demonstrate the particular methods needed to animate common types of plot. Here I focus on the key components needed for updating each frame of the animation. The full code for the examples is here. It includes liberal and arbitrary use of sines and cosines so as to produce looping gifs.

Scatter with variable colour, position, and size

scatter

Continue reading “Elaborate Matplotlib animations”