Python spoilt me, Part 2

In a previous post, I listed a range of Matlab’s idiosyncrasies and flaws that seemed so much more blatant once I returned from several years of Python use. This post is a continuation, except this time highlighting ways in which Python makes life simpler rather than Matlab making life more difficult.

If you haven’t tried Python and you’re on the fence about whether it’s worth learning, let the points below convince you.

Continue reading “Python spoilt me, Part 2”

Python spoilt me; returning to Matlab is hard

Using Python daily for more than three years as part of my scientific workflow and then abruptly returning to regular Matlab use has made me realise how much better Matlab could be and how evident its idiosyncrasies are. Conversely, while I was aware and noticed that Python makes things simple, it is Matlab’s comparative flaws that really made me come to appreciate just how much has been achieved in the past decade by the community in making Python an indispensable scientific tool.

An aim of this post is to recognize Python’s impressive convenience and versatility. Unfortunately, however, this post more naturally develops by taking the pessimistic approach of highlighting Matlab’s flaws. What follows are several minor, and a few major, annoyances that I’ve noticed on returning to Matlab.

Continue reading “Python spoilt me; returning to Matlab is hard”

Organise scripts and figures easily with Jupyter Notebooks

Keeping track of scripts used to generate figures is difficult. Before realising that Jupyter Notebooks could solve most of my problems, I would have directories with dozens of scripts with filenames of varying levels of ambiguity. Names that probably meant something to me at the time, but are hardly descriptive months or years later. Names like  ISW_plume_plots.m, new_ISW_model_plots.m, and plot_model_behaviour.m. A certain PhD comic springs to mind.

Regardless of whether its Python, R, Julia, Matlab, or pretty much any other type of code, Jupyter Notebooks solve the problem. For example, I use a single notebook to archive the code for all figures in a paper and, more importantly, I can associate each set of code with the figure it generates. Rather than trying to remember what file I want, I need only remember which figure I want. (I say archive because I much prefer to do the bulk of my exploratory analysis in an editor. Alternatively, JupyterLab may work better for you.)

Continue reading “Organise scripts and figures easily with Jupyter Notebooks”

An improved Matlab command line (plus Jupyter Notebooks for Matlab)

The command line is a large part of any Matlab user’s workflow. This vital tool, however, isn’t as user friendly as it should be: it’s cumbersome to recall multi-line commands from the history, there’s no support for Vim key bindings, and there’s no syntax highlighting if using the nodesktop option (on a remote computer, say). Fortunately, there’s an alternative that avoids these problems: IMatlab. This kernel also lets you run Matlab code in Jupyter Notebooks (originally known as IPython Notebooks).

Continue reading “An improved Matlab command line (plus Jupyter Notebooks for Matlab)”